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This work studies the momentum and energy transport mechanisms in the corner
between a free surface and a solid wall. We perform large-eddy simulations of the
incompressible fully developed turbulent flow in a square duct bounded above by a
free-slip wall, for Reynolds numbers based on the mean friction velocity and the duct
width equal to 360, 600 and 1000. The flow in the corner is strongly affected by the
advection due to two counter-rotating secondary-flow regions present immediately
below the free surface. Because of the convection of the inner eddy, as the free surface
is approached, the friction velocity on the sidewall first decreases, then increases again.
A similar behaviour is observed for the surface-parallel Reynolds-stress components,
which first decrease and then increase again very close to the surface. The budgets
of the Reynolds stresses show a strong reduction of all terms of the dissipation
tensor in both the inner and outer near-corner regions. They exhibit a reduction in
both production and dissipation towards the free surface. Very close to the solid
boundary, within 15–20 viscous lengths of the sidewall, the turbulent kinetic energy
production and the surface-parallel fluctuations rebound in the thin layer adjacent to
the free surface. The Reynolds-stress anisotropy appears to be the main factor in the
generation of the mean secondary flow. The multi-layer structure of the boundary
layer near the free surface is also discussed.

1. Introduction
Mixed-boundary corner flows occur at the juncture of a no-slip wall and a free

surface. They can be found in a variety of practical applications: the flow around
hulls of ships is perhaps the most common example of this configuration, which
also occurs on the sidewall boundary of an open channel or of a partially filled
container, and in rivers. An important feature of these flows is the interaction of wall
turbulence with a free surface. When turbulence interacts with either a free surface or
a solid wall, it becomes highly anisotropic. The character of the anisotropy, however,
is substantially different in the two cases. A free surface cannot support mean shear,
and restricts motion in the direction normal to the surface only, while a solid wall
forces all the velocity components to vanish at the boundary. The no-slip condition
at a solid wall makes turbulence production and dissipation significant there, whereas
at a free surface turbulence production is negligible and the dissipation rate is smaller
than in the bulk of the flow because of the vanishing of the velocity gradients. Near
a mixed-boundary corner, the interaction of the eddies generated by these different
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mechanisms creates additional physical complexities (compared either with the free
surface or the solid wall alone) that affect the transport of mass, momentum and
energy. In order to predict the flow fields in the applications mentioned above, better
understanding of their physics is required.

The characteristics of the flow near a solid flat surface are well known and will
not be discussed here. Descriptions of the statistical aspects of the flow and of
the turbulent eddies can be found in many textbooks and reviews (see, e.g. Pope
2000; Robinson 1991). The structure of the wall turbulence, however, is significantly
altered in the corner between two solid walls, where the anisotropy of the Reynolds
stresses generates turbulence-driven secondary flows in the plane perpendicular to the
streamwise direction, commonly referred to as ‘secondary flows of Prandtl’s second
kind’. In straight square ducts, the secondary flow is directed from the centre of the
duct toward the corners along the corner bisectors. Although the magnitude of these
secondary velocities is extremely small (of the order of 2–3% of the bulk streamwise
velocity), the distortion of the axial flow can alter the distribution of the friction
coefficient (and thus the mean flow).

Because of the complex physics coupled with a simple geometry, these flows have
been studied extensively, both experimentally and numerically. While the experiments
(Launder & Ying 1972; Melling & Whitelaw 1976; Gessner, Po & Emery 1979) were
the first to quantify the mean flow, numerical calculations (Madabhushi & Vanka
1991; Gavrilakis 1992; Huser & Biringen 1993; Huser, Biringen & Hatay 1994; Su &
Friedrich 1994) have been instrumental in addressing questions related to turbulent
kinetic energy (TKE) production and transfer, as well as to the modifications to
the turbulence structure in these configurations. Huser et al. (1994) investigated
the details of the Reynolds stress budgets and performed quadrant analysis to
examine the dominant structures which give rise to the generation of secondary flows.
They observed that the dominant ejections contain two streamwise counter-rotating
vortices.

Modifications to the turbulence structure occur also when turbulence interacts with
a free surface, where the relative velocity between the fluid and the surface interface
vanishes, the tangential stresses are zero, and the normal stress must balance the
ambient pressure. In addition, in the free-surface case, the boundary can deform. If
the free surface can be considered flat, the tangential vorticity vanishes at the free
surface but not the component normal to the surface, while in the case of a shear-
free deformed free surface, the vorticity at the free surface is non-zero and the surface
acquires a solid-body rotation. The non-dimensional groups that appear in these
flows are the Reynolds number, the Froude number and the Weber number, defined
as Fr = ur/

√
glr and We = ρlru

2
r /σs , respectively, where g is the acceleration due to

gravity, σs the surface tension, and ur and lr are a reference velocity and length. The
Froude number, which is related to the deformation of the free surface, is the most
important one for the present study; low Froude numbers correspond to negligible
free-surface deformations.

Perhaps the main feature of the interaction of turbulence with the free surface is
the modification of the inter-component energy transfer, which has been observed
by virtually all the workers who have examined this problem. In the boundary layer
adjacent to the free surface, the fluctuations parallel to the surface are essentially
unaltered, while the Reynolds-stress component normal to the surface is redistributed
into surface-parallel components, which increase with decreasing distance from the
free surface. In the case of a free-slip flat surface, a picture of the vortex/surface
interactions on the dynamics of turbulence under the free surface emerges from the
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direct numerical simulation (DNS) studies of Perot & Moin (1995), Walker, Leighton
& Garza-Rios (1996) and Nagaosa (1999).

A complete discussion of the ‘multi-layer structure’ of free-surface viscous flow is
not appropriate here (for a more complete review see Shen et al. 1999), but a few
significant results should be described. As shown originally by Hunt & Graham (1978),
a two-layer model can describe the interaction between a shear-free boundary and
turbulence. The layer through which the kinematic boundary condition is felt is
defined as the ‘blockage’ or ‘source’ layer, whereas the thin zone near the free surface
due to the viscous dynamic conditions is called the ‘surface’ layer. The blockage layer,
which is due to the zero normal-velocity condition at the free surface, obtains for any
flow with a boundary constraining the normal motion; redistribution of turbulent
intensities takes place here. In the surface layer, the velocity derivatives are highly
anisotropic, and the values of the surface-parallel vorticity change from ‘outer’ values
to smaller values induced by the boundary conditions. The important scales in the
source layer are the integral scales of the turbulence far below the boundary, while
the viscous layer is characterized by velocity and length scales determined by its own
internal dynamics. When a turbulent shear flow interacts with a free surface, additional
complexities appear. Further investigations of the surface layer can be found in the
work of Anthony & Willmarth (1992) and Walker (1997), who associated the origin of
the current to the near-surface turbulent-stress anisotropy. When the surface deforms,
the Reynolds-stress anisotropy is smaller and the free-surface fluctuations make a
significant contribution (Hong & Walker 2000).

Turbulent channel flows bounded by a rigid wall below and an open free surface
above have been investigated experimentally (Nakagawa & Nezu 1981; Komori
et al. 1982; Nezu & Rodi 1986) and numerically (Lam & Banerjee 1992; Leighton et al.
1981; Handler et al. 1993; Pan & Banerjee 1995). In this configuration, the turbulence
produced near the solid wall owing to the high shear can be convected to the
surface and interact with it, a situation that occurs, for instance, in rivers. While the
investigations cited above approximated the free surface as flat, other studies employed
more realistic approaches (e.g. Komori et al. 1993; Borue, Orszag & Staroselsky 1995;
Tsai 1998). However, in the cases considered, the interfacial deformations and the
normal velocity at the free surface remained extremely small, so that no significant
deviations from the flat-surface case were observed.

In all the free-surface/turbulence interaction studies discussed so far, the flow is
homogeneous in the spanwise (surface-parallel) direction. In this case, several workers
have inferred the quasi-two-dimensionalization of turbulence structure near the free
surface (Sarpkaya & Suthon 1991; Sarpkaya & Neubert 1994; Pan & Banerjee 1995;
Kumar, Gupta & Banerjee 1998). Turbulent shear flows bounded by a vertical wall
and a horizontal free surface may differ significantly from those. In the region close
to the walls or in other situations where turbulence is being generated, for instance,
the eddy structure will certainly be markedly three-dimensional, even near a free
surface. The existence of mean secondary flows in the corner (similar to those that
occur in the closed ducts) adds complexity to the problem. Studies of turbulent flows
in the corner formed by a vertical solid wall and a free surface have been performed,
among others, by Grega et al. (1995), Longo, Huang & Stern (1998), Sreedhar &
Stern (1998), Hsu et al. (2000) and Grega, Hsu & Wei (2002).

Grega et al. (1995) carried out numerical simulations in conjuction with exper-
imental flow visualization and single-component laser-Doppler anemometry (LDA)
velocity measurements. The Reynolds number of the experimental investi-
gation was Reθ = 1150 (based on the momentum thickness θ), while the numerical
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simulation was performed at Reθ = 220. In their work, the presence of the mean
inner and outer secondary flow regions was highlighted. While the inner secondary
region has a parallel in the flow in a corner formed by two solid walls, the outer
secondary flow region does not have an analogue in the wall-bounded corner flow.
The inner secondary vortex convects fluid from the free surface toward the corner,
surrounded by the outer flow, which convects flow from the sidewall to the free
surface. In Grega et al. (1995), the inner secondary flow was very weak, and could
not be observed by flow visualization; it was, however, resolved in the computations.
Longo et al. (1998) examined the flow in the corner formed by a towed surface-piercing
plate and a free surface at rest. Three-component laser-Doppler velocimetry (LDV)
measurements for both boundary layer and wake were also used to obtain scaling
properties for the anisotropy of the normal Reynolds stresses. However, in this case
also, the marginal measurement resolution did not permit visualization of the inner
secondary vortex motion. Sreedhar & Stern (1998) carried out large-eddy simulations
(LES) of compressible temporally developing solid/solid and solid/rigid-lid corner
flows. In these simulations, in which the inner secondary flow was resolved, the TKE
increased near the rigid-lid boundary and a redistribution of energy from the surface
normal components to the other two was also observed in this region. There is some
controversy on this issue, since Longo et al. (1998) and Sreedhar & Stern (1998)
predict an increase of mean-square streamwise velocity fluctuations as the distance
from the free surface decreases, while Grega et al. (1995), in their experiments, measure
an increase in this quantity. Similar discrepancies are found in the behaviour of the
anisotropy-tensor profiles. As an extension of the work of Grega et al. (1995), Hsu
et al. (2000) studied the TKE transport mechanisms in the mixed-boundary
corner using high-resolution digital particle image velocimetry (DPIV) and LDV
measurements. They found that both TKE production and dissipation are
dramatically reduced close the free surface.

Some of the conclusions of Longo et al. (1998) and Sreedhar & Stern (1998) also
appear to be in conflict with the results obtained by the follow-up experimental study
of the same problem by Hsu et al. (2000), suggesting that the dynamics of boundary-
layer/free-surface juncture have not been perfectly elucidated. Furthermore, certain
issues were not fully addressed owing to limitations of experimental investigations,
for example the resolution of the flow very near the free surface. The origin of the
inner secondary flow in the context of vorticity transport, the role played by the
diverging surface current found when studying jets, wakes or boundary layers parallel
to a free surface (Walker 1997), the vortex structures in a turbulent mixed-boundary
corner, are examples of the questions not yet conclusively investigated. Many of the
discrepancies are probably due to different set-ups in the different studies, as also
mentioned by Grega et al. (2002). High-resolution DPIV measurements made in the
cross-stream plane by Grega et al. (2002) using the same experimental apparatus as
two earlier works by the authors, pointed out that there is an, as yet, undetermined
source of streamwise vorticity particularly in the outer secondary flow region close to
the free surface.

The objective of this work is to address some of the issues mentioned above and
resolve some of the discrepancies between previous studies by performing LES of the
flow inside a square duct bounded by a gas–liquid interface at the top. In particular,
we will computationally provide a complete picture of the secondary flows. The
features of these flows will be related to the presence of a free-surface current, and
inter alia the effects on turbulence statistics of the peculiar boundary-layer structure
will be investigated. After having demonstrated the accuracy of the numerical tool,
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we will study the inner secondary flow in the context of the streamwise budget
of momentum equation and vorticity transport; then, we will attempt to provide
a detailed description of the turbulent energy transport mechanisms in the mixed-
boundary corner. The use of LES (rather than DNS) allows us to perform calculations
at three Reynolds numbers, Reτ = 360, 600 and 1000 (based on the mean friction
velocity and the duct width).

The paper is organized as follow: in the next section, the problem formulation,
numerical method and subgrid-scale model used are briefly described. Then, the
results of a closed-duct calculation will be presented to validate the code. Discussion
of the mean flow, Reynolds stress and vorticity statistics will follow. Finally, some
conclusions will be drawn in the last section.

2. Problem formulation
2.1. Governing equations and numerical method

The governing equations for LES are obtained by the application of a spatial filter
to the Navier–Stokes equations to separate the effects of the (large) resolved scale
from the (small) subgrid-scale (SGS) eddies; in the case of an incompressible viscous
flow in presence of body forces, they can be written in the following form:

∂ui

∂t
+

∂

∂xj

(ujui) = − ∂p

∂xi

+
1

Reτ

∇2ui − ∂τji

∂xj

+ fi,
∂uj

∂xj

= 0, (2.1)

where the overbar denotes filtered variables and the effect of the subgrid scales appears
through the SGS stresses τij = uiuj − uiuj ; uj is the fluid velocity component in the
j -direction and p is the pressure divided by the constant density. Equations (2.1) are
non-dimensionalized using the mean friction velocity, uτ , and the duct width, D, as
characteristic velocity and length scales, respectively. Thus, the Reynolds number is
defined as Reτ = uτD/ν, where ν is the kinematic viscosity. The flow is driven by
a constant body force per unit mass, f1. Periodic boundary conditions are used in
the streamwise directions and no-slip boundary conditions are imposed on walls. The
boundary conditions enforced on the top surface of the computational domain are
either the no-slip conditions

u = 0, v = 0, w = 0, (2.2)

or the no-stress boundary conditions

∂u

∂z
= 0,

∂v

∂z
= 0, w = 0. (2.3)

Despite the limitations of these assumptions, previous numerical studies have shown
that a rigid free-slip wall approximation allows us to predict many of the phenomena
seen in experiments with waveless interfaces (Lam & Banerjee 1992; Leighton et al.
1981; Handler et al. 1993; Pan & Banerjee 1995).

In the present work, the SGS stresses τij are parameterized by an eddy-viscosity
model of the form:

τij − 1
3
δij τkk = −2νTSij = −2C�2|S|Sij , (2.4)

where δij is Kronecker’s delta, |S| = (2SijSij )
1/2 is the magnitude of the large-

scale strain-rate tensor Sij = (∂ui/∂xj + ∂uj/∂xi)/2, and � = 2 (�x�y�z)1/3 is the
filter width. Closure of the SGS stresses τij is obtained through specification of the
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model coefficient C appearing in (2.4). In the present work, the dynamic procedure
proposed by Germano et al. (1991) and Lilly (1992) is used to determine the eddy-
viscosity coefficient C. The constant C is averaged along the homogeneous streamwise
direction; this type of averaging is effective in removing spurious fluctuations of C

which tend to destabilize the calculations, and has been used in several calculations
of turbulent flows that are homogeneous in one direction only (Akselvoll & Moin
1996; Mittal & Moin 1997), with accurate results. The sum of the laminar and eddy
viscosity is set to zero wherever it becomes negative.

The numerical approach employed for the solution of (2.1) is the fractional step
method (Chorin 1967; Kim & Moin 1985). The time-advancement for the intermediate
advection-diffusion step is performed in a semi-implicit fashion with a two-substep
second-order accurate Runge–Kutta algorithm. This is followed by the pressure-
correction step, which enforces the divergence-free condition; the Poisson equation
for the pressure-like function is solved once per time step. All the spatial derivatives are
approximated using a second-order-accurate central discretization on a non-uniform
collocated grid. Solution of the Poisson equation is obtained by means of a successively
over-relaxed Gauss–Seidel method; a multigrid algorithm of a correction-scheme type
is used to accelerate the convergence toward the solution. Implicit treatment of the
diffusive terms allows a larger time step, which is only limited by the explicit treatment
of the advective and SGS terms. The overall accuracy of the method is second order
in time and space.

Parallelization of the code is achieved by an effective domain decomposition
technique; the domain is divided into a number of subdomains along the streamwise
direction. Communications between processors are made by using the message-passing
programming and the send, receive and reduce statements of the message-passing
library Message-Passing Interface (MPI). This algorithm is described in detail in
Broglia, Di Mascio & Muscari (1999).

2.2. Geometry and grid parameters

The Navier–Stokes equations are solved numerically in a rectangular domain of size
2πD × D × D in the x-, y- and z-directions, respectively. The streamwise length of the
domain was chosen based on the two-point velocity correlations computed by Huser &
Biringen (1993) to ensure that the domain is large enough to contain the longest
structure present in the flow.

The physical domain is discretized using between 4.7 × 105 grid points for the low-
Reynolds-number simulation, and 5.6×106 grid points for the high-Reynolds-number
one. All the discretizations are uniform in the streamwise (x) direction, whereas in the
spanwise and normal directions (y and z, respectively) points are clustered towards
the walls; in particular, for all the simulations, the first point close to the wall is
placed at y+ or z+ = 0.5 and at least 13 points are in the near-wall region (y+ or
z+ < 10). Points are also clustered toward the slip wall, with a minimum grid spacing
of about 1.5 wall units for the high Reynolds numbers and 0.5 for the lowest one.
The problem geometry is sketched in figure 1, and the mesh characteristics are given
in table 1.

The equations were integrated in time until a statistical steady state was reached
(the steady state was determined by monitoring the time history of the total wall
shear stress). After that, data for the statistics were collected for several large-eddy
turnover times (LETOTs) D/uτ . Streamwise homogeneity and symmetry about the
plane y = 0.5D were used to increase the sample size. The sampling interval for each
case (also in LETOTs) is reported in table 2. The relevant non-dimensional parameters
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�y+ �z+ Points in
Simulation nx × ny × nz �x+ min–max min–max y+ or z+ < 10

Closed duct, Reτ = 360 50 × 97 × 97 48.1 0.5–8.1 0.5–8.1 13
Closed duct, Reτ = 600 82 × 129 × 129 47.7 0.5–10.7 0.5–10.7 14
Open duct, Reτ = 360 50 × 97 × 97 48.1 0.5–8.1 0.5–8.1 13
Open duct, Reτ = 600 82 × 129 × 129 47.7 0.5–10.7 0.5–10.7 14
Open duct, Reτ = 1000 144 × 197 × 197 43.9 0.5–11.6 0.5–11.9 15

Table 1. Grid characteristics.

Simulation Sampling time �t Ub Uc Computed uτ Reb

Duct Reτ = 360 16.19 15.35 19.30 1.0012 5526
Duct Reτ = 600 9.42 16.54 20.27 1.0055 9924
Open duct Reτ = 360 12.77 15.48 18.39 1.0006 5571
Open duct Reτ = 600 13.08 16.41 19.12 1.0024 9844
Open duct Reτ = 1000 5.03 17.13 20.12 0.9953 17 130

Table 2. Averaging and global flow characteristics. Uc is the maximum velocity in the duct.
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Figure 1. Sketch of the problems.

are the Reynolds number based on the friction velocity uτ and the duct width D,
Reτ = uτD/ν, and the bulk Reynolds number defined using the bulk (area-averaged)
streamwise velocity Ub, Reb = UbD/ν. In table 2, the Reynolds numbers and some
global results of the present simulations are shown. The value of uτ obtained from
the calculations is within 0.5% of the nominal value uτ = 1. This difference supplies
an estimate of the sampling error for the first- and second-order statistics, which was,
respectively, 0.5% and 1%.

In the following discussions, the angular brackets, 〈·〉, denote an average over time
and the homogeneous direction, whereas a double prime denotes fluctuation with
respect to mean resolved quantity, q ′′ = q − 〈q〉; thus, the resolved quantities are
decomposed into mean values and resolved fluctuations:

ui = 〈ui〉 + u′′
i , p = 〈p〉 + p′′, τij = 〈τij 〉 + τ ′′

ij . (2.5)
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Figure 2. Duct flow. (a) Mean streamwise velocity profiles along the wall bisector; (b) wall
stress distribution along the sidewall. ——, Reτ = 360; · · · · · ·,Reτ = 600; �, DNS at Reτ = 300
(Gavrilakis 1992); �, DNS at Reτ = 600 (Huser & Biringen 1993).
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Figure 3. Duct flow. Root mean square velocity fluctuations along the wall bisector. (a) u;
(b) v; (c) w. ——, Reτ = 360; – – –, Reτ = 600; �, DNS at Reτ = 300 (Gavrilakis 1992); �,
DNS at Reτ = 600 (Huser & Biringen 1993).

Thus, the averaged resolved velocity and turbulent stresses are denoted by 〈ui〉 and
〈u′′

i u
′′
j 〉, respectively.

3. Results and discussion
3.1. Validation: closed duct flow

To determine the accuracy of the present numerical method in configurations similar
to the open duct, LES of fully developed turbulent flow in a closed square duct
were performed and compared with the available DNS data. The current LES
solutions at Reτ = 360 and 600 are compared with low-Reynolds-number DNS
solution by Gavrilakis (1992) at Reτ = 300 (Reb = 4410) and with those by Huser &
Biringen (1993) at Reτ = 600 (Reb = 10 320).

Mean turbulent statistics are shown in figures 2 and 3. Here and in the following,
unless otherwise stated, all quantities are normalized using the mean uτ and D. The
agreement with the DNS data is good. In particular, the overshoot in the logarithmic
layer (figure 2a) observed in the DNS is captured quite well. The main topological
features of the flow, such as the secondary vortices often observed in the corner region,
are also captured well. Gavrilakis (1992) performed a DNS using a second-order finite
difference on a staggered grid with up to 16.1×106 grid points (768×127×127) and a
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Figure 4. Open duct flow. (a)–(c) Mean streamwise velocity contours and secondary velocity
vectors. (d)–(f ) Vorticity contours. (a), (d) Reτ = 360; (b), (e) Reτ = 600; (c), (f ) Reτ = 1000.

box length of lx = 10π. Our calculation uses approximately one fifth of the resolution
of this DNS (470,450 points are used to discretize a domain that is one fifth the length
of that of Gavrilakis 1992). Our grid resolution, on the other hand, is comparable to
that of the DNS by Huser & Biringen (1993), which used 96 × 101 × 101 grid points
with a spectral/high-order finite-difference scheme and a time-splitting integration
method.

3.2. Open duct: mean velocity

Figure 4 shows mean streamwise-velocity contours and cross-stream velocity vectors
in the cross-stream (y, z)-plane for the three Reynolds numbers considered here. In the
figures, the free surface is at the top, and only half of the domain is shown. In the lower
corner, the flow is very similar to that observed in closed square ducts: a turbulence-
driven secondary flow, consisting of a streamwise counter-rotating vortex pair deforms
the isotachs by convecting high-momentum fluid from the central region of the duct
towards the corner region along the corner bisector. Contours of the resolved mean
streamwise vorticity 〈ωx〉 = ∂〈w〉/∂y − ∂〈v〉/∂z show positive and negative extrema
at the vertical and horizontal walls because of the no-slip conditions. In the centre of
the larger flow-cells the vorticity attains extreme values locally. In the upper corner,
on the other hand, the effects of the free-shear surface become important. The main
feature of the flow field near the mixed corner is the existence of an ‘inner’ and an
‘outer’ mean secondary flow, as observed in the unbounded corner flow studied by
Grega et al. (1995). The ‘inner secondary region’ at the mixed corner consists of a
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Figure 5. Open duct flow. (a) Mean streamwise-velocity profiles in wall units along the
bottom-wall bisector; (b) friction velocity distributions along the sidewall. ——, Reτ = 360;
· · · · · ·, Reτ = 600; – – –, Reτ = 1000; �, uτ obtained at Reτ = 600 from the Clauser plot.

weak vortex that convects momentum towards the corner itself, along the free-slip
boundary, whereas the ‘outer secondary vortex’ is responsible for transport of low-
speed momentum from the sidewall boundary-layer, towards the free surface. The
scale and strength of the outer secondary vortex are larger than those of the other
vortices appearing in the cross-plane view. The maximum value of the secondary
velocity is about 3% of the streamwise velocity, slightly greater than that observed
in the closed duct case. Furthermore, the contours of mean streamwise vorticity show
a direct correspondence with the secondary flow. A small increase of the secondary-
flow intensity with the Reynolds number is observable. The flow behaviour near the
sidewall in the region around z = 0.5 shows a transition between the corner and the
free-surface behaviour, characterized by a weaker counter-clockwise vortical motion.
This vortex is prevented from growing to dimensions and strength comparable to the
corner eddy by the presence of the two surface vortical structures, but its effects on
the flow field are important. In particular, it thickens the wall layer in this region,
affecting the wall stress distribution and the momentum transport. Such a vortical
region was not observed by Grega et al. (1995), suggesting that is driven by the
anisotropic turbulence generated by the bottom no-slip wall.

In figure 5(a), the mean streamwise-velocity profiles in logarithmic scale along
the bottom-wall bisector (y = 0.5) are presented for the three Reynolds numbers
considered. They satisfy the logarithmic law very well, and maintain the log-law
behaviour until very close to the free surface. Compared with the closed-duct case,
we do not observe the overshoot of the logarithmic layer intercept. Since the grid
resolution for the closed- and open-duct calculations was the same, this can be
interpreted as a results of slightly weaker turbulence production near the walls away
from the duct corners, compared with the companion closed-duct flow. The mean
velocity profiles exhibit a maximum near the free surface. In the region 0.8 < z/D < 1
a zone of negative mean shear ∂〈u〉/∂z is observed (see figure 6), owing to the
augmentation of the vertical descending convective transport caused by the outer
secondary flow as the free surface is approached. The centre of the duct is the
merging point of two opposite diverging currents generated at the sidewalls (Walker
1997). As reported in Shen, Triantafyllou & Yue (2000) for an unbounded shear flow,
this is a first indicator of the boundary-layer structure near a free surface, whose
maximum and minimum mark the ends of the two layers at the interface. Secondary
flows clearly appear to have a significant effect on the region where these events
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Figure 6. Open duct flow. Mean shear profiles normalized with u2
τ /ν. z+

FS is the distance from
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(b) Reτ = 600, (c) Reτ = 1000. ——, y+ = 3; · · · · · ·, y+ = 15; – – –, y+ = 30; −·−, y+ = Reτ /2.

occur. Note that around the demarcation between the inner and outer secondary
region (y+ ∼ 40) a behaviour similar to that observed in shear-free unbounded flow
is recovered, and that the size of the surface layer exhibits little Reynolds-number
dependence.

In figure 5(b), the distributions of the mean friction velocity along the sidewall are
shown. Grega et al. (1995) and Hsu et al. (2000) reported experimental data that
show a thickening at the free-surface edge of the turbulent boundary layer on the
vertical wall as a result of the free-surface current. Consistent with these results,
the friction velocity from the present computations decreases as the free surface is
approached. The present computations, however, also show an increase of uτ very
near the surface, again due to the inflow from the inner secondary cell, which convects
high-speed momentum toward the sidewall at the free surface. This result is consistent
with the numerical results presented in Grega et al. (1995) and indicates a reduction
of the boundary-layer thickness in the vicinity of the free surface, which was not
observed experimentally. Two causes can be the origin of the discrepancy between
numerical and experimental data. One is the use of the Fr = 0 approximation, which
is least accurate in the corner region. However, the experiments of Grega et al. (1995)
and Hsu et al. (2000) were conducted at a low reference Froude number, so that
waves and surface deformations are not expected to have a significant effect on the
interaction of the free surface with the turbulence-driven secondary flows developed
near the corner. The second, and perhaps most significant, factor relates to the method
used in the experimental studies to determine the skin friction. Friction velocities were
determined experimentally from the mean streamwise-velocity data measured at two
different distances from the surface (60 and 5080 viscous lengths below the free
surface, the latter profile corresponding to the tunnel centre). From each individual
mean velocity profile, uτ and the wall location were determined by fitting to the
Clauser plot for a canonical turbulent boundary layer. In the corner region, however,
the flow deviates significantly from the standard logarithmic behaviour. In figure 7,
the velocity profiles and distances from the wall are normalized using the local value
of uτ . Near the free surface, the slope of the logarithmic region is significantly lower;
here, friction velocities determined using the Clauser plot are not accurate. This is
shown in figure 5(b) in which the solid dots represent the friction velocity calculated
by requiring that the velocity profile satisfy the logarithmic region at y+ = 100. Note



234 R. Broglia, A. Pascarelli and U. Piomelli

20

16

12

8

4

0
100 101 102

y
l
+

u
l
+

Figure 7. Open duct flow, Reτ = 600. Mean streamwise-velocity profiles in wall units for
different distances from the free surface: �, z = 1; ——, z = 0.98; – – –, z = 0.95; �, z = 0.8;
−·−, z = 0.6.

further that Stern et al. (1995) observe a secondary flow near the free-surface edge
of a turbulent boundary layer on a vertical wall. The rotation of the secondary flow
was such that the boundary layer was thinner as the free surface was approached.
The secondary flow was explained in terms of the anisotropy in the Reynolds stresses.
Increasing the Reynolds number results in a thickening of the sublayer on the lower
wall, but has very little effect on the region close to the free surface.

3.3. Open duct: Reynolds stresses

Figure 8 shows the cross-stream spatial distribution of the Reynolds stresses in
the Reτ = 600 case. In the present simulations, the SGS stresses are an order of
magnitude smaller than the resolved ones (at least away from the walls), and the
large-scale quantities shown in the following represent the contribution from most of
the significant turbulent motions. Near the upper corner, the normal Reynolds stresses
distributions are significantly different from the lower corner region. The streamwise
normal stress 〈u′′u′′〉 is nearly two-dimensional along most of the sidewall, and begins
to decrease only very near the free surface; in the lower corner, by comparison,
the distribution of 〈u′′u′′〉 begins to be affected by the bottom wall at z � 0.2.
The other two normal components are more three-dimensional, affected both by the
solid surface on the bottom and the free surface on top. At the free surface the w′′

fluctuations vanish, and 〈w′′w′′〉 = 〈u′′w′′〉 = 〈v′′w′′〉 = 0. Significant cross-plane shear
stresses 〈v′′w′′〉 – a component difficult to measure experimentally – are concentrated
in small areas, especially near the corners. Unlike the other components, 〈v′′w′′〉,
which is closely related to the presence of secondary flow, exhibits a high degree of
antisymmetry with respect to the sidewall bisector; this is because w = 0 along the
top surface, so that both top and bottom walls act as sinks of 〈v′′w′′〉, in agreement
with the observation of previous studies of open-channel turbulent flows (Komori
et al. 1982; Handler et al. 1993).

Figures 8 and 9 (in which the corner region is enlarged and the mean secondary
streamlines are superposed on the Reynolds-stress contours) show a rapid decrease
in the vertical component and an increase in the horizontal components of the
turbulence as the free surface is approached; moreover, most of the energy of the
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vertical component is transferred to the spanwise component with only a small
increase in the streamwise one. The vortical structure plays an important role in
decreasing the levels of 〈w′′w′′〉 near the sidewall by convecting fluid from the free
surface (where 〈w′′w′′〉 = 0) towards the wall. The distributions of 〈u′′v′′〉 and 〈u′′w′′〉
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show the effect of the free surface and the demarcation between inner and outer
secondary flows. Near the free surface −〈u′′v′′〉 decreases significantly, with a local
maximum at the free surface. This is also shown in figure 10, in which the profiles
of 〈u′′v′′〉 along constant y-lines are shown; they indicate that, across the interface
between inner and outer regions, 〈u′′v′′〉 values at the free surface are smaller than
those 10–20 viscous lengths away from the free surface. A very strong correlation can
be observed between the vortex location and the area in which the secondary shear
stress, 〈u′′w′′〉, is large. In this region, 〈u′′w′′〉 is of the same order of magnitude as
〈u′′v′′〉: the turbulent transfer of streamwise momentum in the direction normal to
the free-surface is as important as the transport in the wall-normal direction.

Hsu et al. (2000) observed an increase in surface-parallel turbulent components for
distances from the sidewall greater than 50 viscous lengths, while near the wall all three
components of turbulent motion were observed to decrease to a minimum at the free
surface. In the present calculation, we also observe that very close to the free surface
(within 20 viscous lengths of the free surface) the 〈u′′u′′〉 and 〈v′′v′′〉 stresses ‘rebound’
in the near-wall region (figure 11). Outside the inner secondary region (y+ � 40),
in agreement with the behaviour in open channel flows (Leighton et al. 1981;
Lam & Banerjee 1992; Handler et al. 1993; Pan & Banerjee 1995), the increases
in spanwise velocity fluctuations are larger than the increases in the streamwise
fluctuations. Figure 11 shows that at the lower wall bisector (y+ = Reτ/2), the r.m.s.
velocity-fluctuation profiles exhibit trends similar to open channel flows. Indeed,
urms dominates, and near the free surface, turbulence moves towards a quasi-two-
dimensional state (see Walker et al. 1996). From a mathematical point of view, this
behaviour at the centre of the duct is obvious since the Reynolds stresses depend on
the shear components, most of which are zero at the centre of the duct since symmetry
and fully developed conditions are assumed. A different behaviour was observed at
all Reynolds numbers in the region associated with the inner secondary flow: both
〈u′′u′′〉 and 〈v′′v′′〉 increase near the surface. This issue will be discussed later based on
the Reynolds-stress budget data. A difference between the results of the present work
and those of Hsu et al. (2000) is that the recovery of 〈u′′u′′〉 occurs across almost
all the surface, except at the lower-wall bisector where ∂〈u〉/∂y is equal to zero and
∂〈u〉/∂z values are almost constant in the region 0.8 < z/D < 1. Previous studies
of Perot & Moin (1995) and Walker et al. (1996) revealed significant differences
between shear-free boundary layers near solid walls and free surfaces, such as the
higher tangential Reynolds stress and lower dissipation near a free surface. Walker
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Figure 11. Open duct flow: r.m.s. velocity fluctuations normalized with the reference friction
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et al. (1996) attribute the apparent increase of turbulence kinetic energy near a rigid-
lid boundary to the reduced dissipation of the tangential velocity fluctuations. The
persistence of the surface-attached vortices observed in the numerical study of Pan &
Banerjee (1995) is also explained by this minimum in dissipation, together with the
no-stress boundary conditions. Current calculations indicate that for juncture flows
the peculiar production behaviour can affect the velocity fluctuations.

To understand the mechanisms that contribute to the Reynolds stress distributions
shown above, we will examine their budgets. The resolved Reynolds-stress transport
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equations are of the form:

0 = −〈uk〉
∂〈u′′

i u
′′
j 〉

∂xk

+ Pij − εij + Dij + φij + ψij + Tij , (3.1)

where the terms on the right-hand side represent (rate of) advection, production, dis-
sipation, viscous diffusion, pressure–strain, pressure diffusion, and turbulent diffusion
tensors, respectively. The last six terms in (3.1) are defined as:

Pij = −
[(

〈u′′
ju

′′
k〉∂〈ui〉

∂xk

+ 〈u′′
i u

′′
k〉∂〈uj 〉

∂xk

)
+

(
〈τik〉〈Sjk〉 + 〈τjk〉〈Sik〉

)]
, (3.2)

εij =

[
2
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∂u′′
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〉
−

(
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, (3.3)

Dij =
1

Reτ

∂2〈u′′
i u
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, (3.4)

φij =

〈
p′′

(
∂u′′
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∂xj

+
∂u′′

j

∂xi

)〉
, (3.5)

ψij = − ∂

∂xk

(
〈p′′u′′

j 〉δik + 〈p′′u′′
i 〉δjk

)
, (3.6)

Tij = −
[
∂〈u′′

i u
′′
ju

′′
k〉

∂xk

+
∂

∂xk

(
〈u′′

j τ
′′
ik〉 + 〈u′′

i τ
′′
jk〉

)]
. (3.7)

The dissipation and turbulent diffusion consist of two parts: a resolved and a subgrid-
scale contribution. To quantify the contribution of the SGS eddies to the terms in
the Reynolds-stress budgets, we compare the SGS dissipation εsgs = −〈τijSij 〉, the net
large-scale energy drained by the subgrid scales, to the total (molecular + SGS) one,
ε. This is the most significant of the SGS terms that appear in (3.1). The volume-
averaged εsgs is 18%, 19% and 21% of the total volume-averaged dissipation, for the
three Reynolds numbers considered. Using LES and DNS of mixing layers, Geurts &
Fröhlich (2002) found that, when this measure of ‘subgrid-activity’ is less than 30%,
the modelling errors are less than 1%.

Figure 12 shows the terms in the budget of the turbulent kinetic energy K =
〈u′′

i u
′′
i 〉/2. Here and in the following, all terms are normalized by uτ and ν. Advection

is negligible everywhere except in the mixed-boundary corner, as will be discussed
later, and is not shown in this figure. Along the side and bottom walls the budget
resembles that observed in a flat-plate boundary layer: production and dissipation are
nearly in balance, except very near the wall itself, where turbulent and viscous diffusion
become important. An enlargement of the corner region, in which the secondary-flow
streamlines are superposed on the budget terms and advection is shown in figure 13.

The turbulent kinetic energy is dominated by the streamwise stress 〈u′′u′′〉, whose
production (shown in figure 14c) includes the main shear components, ∂〈u〉/∂y,
∂〈u〉/∂z. The terms in the budgets for the two other normal components (shown in
figures 15 and 16, respectively) are smaller than those in the streamwise one by an
order of magnitude, reflecting the absence of a significant shear in the production
term. All terms contribute to the budgets of 〈v′′v′′〉 and 〈w′′w′′〉.

Hsu et al. (2000), observed that both TKE production and dissipation are drama-
tically reduced in the near-corner region, close to the free surface. Far from the wall,
this results in an increase of the surface-parallel fluctuations very close to the free
surface. Close to the sidewall and within 20 viscous lengths of the free surface, all
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Figure 12. Open duct flow, Reτ = 600: spatial distributions of the terms in the budget of
K = 〈u′′

i u
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i 〉/2. (a) Turbulent diffusion; (b) pressure diffusion; (c) production; (d ) dissipation;

(e) pressure–strain; (f ) viscous diffusion.

three components of turbulent motions were reported to decrease to a minimum at
the free surface. This reduction was explained by Shen et al. (1999) through two
mechanisms: the annihilation of w′′ due to the constraint on the vertical motion at
the free surface, and the vanishing of ∂〈u〉/∂z caused by the shear-free boundary
condition. Our calculations agree only in part with the experimental findings. While
a decrease of the production is observed in the corner region as the free surface is
approached, we observe that the production of 〈u′′u′′〉 increases near the free surface
(figure 14c), but that of 〈v′′v′′〉 decreases (figure 15c). Near the inner secondary-
flow cell, production appears to rebound, and the imbalance between production
and dissipation is balanced by advection of TKE away from the corner, along the
sidewall. Among the production terms that contribute to the TKE, −〈u′′v′′〉∂〈u〉/∂y
is the dominant one in the corner region.

To complete the above picture, in figure 17 the dependence of the TKE budget
terms on the Reynolds number is examined. The distributions of different terms,
non-dimensionalized with the reference uτ and ν, are presented. The corner does not
affect the wall scaling expected near a solid boundary for most of the terms (notably
production and dissipation, the leading ones in this region). Only advection, which
is determined by the interaction between the inner and outer secondary-flow cells,
deviates significantly from this scaling.

We will now discuss the budgets of the normal Reynolds stresses in the corner
region (figures 14–16) by first describing how the solid-wall/free-surface juncture
alters the mechanism of the intercomponent energy transfer. The production rate,
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Figure 13. Open duct flow, Reτ = 600: spatial distributions of the terms in the budget
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Reτ = 360; · · · · · ·, Reτ = 600; – – –, Reτ = 1000.

P33, which, together with P22 and P23, contains only secondary shear components
(namely, ∂〈v〉/∂y, ∂〈v〉/∂z, ∂〈w〉/∂y and ∂〈w〉/∂z), goes to zero at the free surface
and is not directly related to the corresponding Reynolds stress distribution 〈w′′w′′〉
(figures 9c and 16c). In this region, the distribution of 〈w′′w′′〉 is more influenced by
the surface-normal contribution of the pressure–strain, φ33 (see figure 16e).

The ‘pressure–rate-of-strain’ tensor, φij , distributes energy among the components
of normal stresses 〈u′′u′′〉, 〈v′′v′′〉 and 〈w′′w′′〉, usually shifting energy from the
components of the Reynolds stress tensor that receive most of the production by
mean shear into the others. Since φij involves pressure fluctuations, it represents a
term associated with non-local interactions and (in wall-bounded flows) is the most
important contribution to the pressure correlation tensor Πij = φij +ψij in the buffer
and the logarithmic region. Near the sidewall φij and ψij are opposite-valued and
cancel each other (similarly to what happens in plane channel flow (Mansour, Kim &
Moin 1988). Toward the middle plane the distribution of φ33 is qualitatively different
from the results of open-channel flow (Handler et al. 1993; Komori et al. 1993).
In the corner region, up to the demarcation between inner and outer secondary
flow, φ33 decreases and becomes negative as the free surface is approached, whereas
it remains positive elsewhere. This indicates that the pressure–strain term, which
increases 〈w′′w′′〉 throughout nearly the entire flow region, near the inner secondary-
flow region transfers the surface-normal component of TKE to the other components.
At the free surface in the outer secondary region, φ33 is also a production term, but
opposite to ψ33; they cancel each other. Apart from a small negative region very
near the sidewall, on the other hand, φ22 remains positive in the boundary layer
below the free surface (figure 15e), while φ11, which is negative throughout nearly



Large-eddy simulations of ducts with a free surface 243

–0.05

(a) (b) (c)
1.00

0

0.96

0.92

0.88

z

0.05 –0.05

1.00

0

0.96

0.92

0.88

0.05–0.05

1.00

0

0.96

0.92

0.88

φ
i j

0.05
φ

i j
φ

i j

Figure 18. Profiles of the diagonal components of the pressure-strain correlation tensor for
Reτ = 600 at different distances from the sidewall: (a) y = 0.065; (b) y = 0.203; (c) y = 0.5.
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the entire mixed-corner region, becomes very slightly positive at the free surface
(figure 14e). Note that ψ11 = 0, because the flow is homogeneous in the streamwise
direction. Noting that |φ22| > |φ11| through most of the corner region we conclude that,
outside of the inner secondary region, the dominant energy transfer is from the sur-
face-normal component to the spanwise one, in agreement with previous studies of
boundary layers adjacent to the free surface (Handler et al. 1993; Perot & Moin 1995;
Walker et al. 1996).

In the inner region, however, a different behaviour can be observed. This is
illustrated in figure 18, in which profiles of the diagonal components of the pressure–
rate-of-strain tensor, φ11, φ22 and φ33, at two y-locations are compared with the corres-
ponding terms from the closed-duct simulation. At y = 0.065 (figure 18a), φ33 causes a
loss of 〈w′′w′′〉 immediately below the free surface (in the open duct) or the wall (in the
closed duct). At the solid–solid corner, we can distinguish two layers: one, next to the
solid wall, in which the 〈w′′w′′〉 stress is distributed both to 〈u′′u′′〉 and 〈v′′v′′〉 through a
negative φ33 and increased φ11 and φ22; this is similar to the ‘splatting effect’ that occurs
in the vicinity of a solid boundary (Moin & Kim 1982). For 0.95 < z < 0.98, however,
the decrease of 〈w′′w′′〉 results mostly in an increase of 〈v′′v′′〉; this effect, in which only
one Reynolds-stress component is increased, while another is decreased, is called a
‘corner effect’ by Huser et al. (1994). Near the mixed juncture there is little evidence of
the corner effect: the spanwise component φ22 is positive and increases approaching
the interface; the streamwise component φ11 also becomes slightly positive in the
vicinity of the free surface. Thus, in this region the vertical component of TKE is
distributed both to 〈u′′u′′〉 and 〈v′′v′′〉. Further away from the sidewall, for y = 0.203,
only the splatting effect is present both in the solid and in the mixed corners.

In the present problem, all the off-diagonal Reynolds stresses are non-zero. Their
budgets in the corner region are shown in figures 19–21. The contours of 〈u′′v′′〉 and
〈u′′w′′〉, which are responsible, respectively, for the transport of streamwise momentum
in sidewall and free-surface normal directions, are correlated with those of the
production terms P12 and P13, in which a connection between primary and secondary
shear stresses is present, and the terms containing products of main strain components
and normal stresses are dominant. The distribution of 〈v′′v′′〉 mainly affects the
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production of 〈u′′v′′〉 through P12 � −〈v′′v′′〉∂〈u〉/∂y, while the variation of 〈w′′w′′〉 is
a significant mechanism for the 〈u′′w′′〉 generation, since P13 � −〈w′′w′′〉∂〈u〉/∂z. At
the mixed corner, ∂〈u〉/∂y monotonically increases approaching the sidewall, but the
production of 〈u′′v′′〉 shows a small reduction owing to the changes in the distributions
of 〈v′′v′′〉 in this region along the free surface. The pressure–strain term φ12 appears as
a gain in the 〈u′′v′′〉 budget throughout nearly the entire corner region, having a local
maximum near the core of the inner cell. The production of 〈u′′w′′〉 changes sign at the
demarcation between inner and outer secondary flow and becomes negative in regions
associated with the inner secondary cell, since ∂〈u〉/∂z, zero at the free surface, attains
a local maximum immediately below the interface due to the secondary motions.
Term φ13 presents a more complicated pattern. The negative extreme values of 〈u′′v′′〉
and 〈u′′w′′〉 in the core of the inner secondary region affect directly the production
of 〈u′′u′′〉, P11 � −2(〈u′′v′′〉∂〈u〉/∂y + 〈u′′w′′〉∂〈u〉/∂z), which increases at the inner
secondary flow cell, and remains positive across the surface. As previously stressed, in
the central part of the duct ∂〈u〉/∂y goes to zero; this reduces the corresponding term
in P11. The remaining term in P11 is also reduced close to the free surface because of
the suppression of ∂〈u〉/∂z by the shear-free boundary condition. Furthermore, in the
budget for 〈u′′u′′〉 the pressure–strain term φ11 appears as a slightly positive quantity at
the free surface (figure 18c) and hence it may be thought of as pseudo-production term
as far as the streamwise fluctuations are concerned. The gained energy is transported
by the diffusion terms and lost by dissipation. In the open-channel flow, the pressure–
strain term φ33 decreases and becomes negative near the surface. The term φ33 and the
dissipation term ε33 nearly balance across almost the entire depth of the channel, but
near the free surface and near the wall φ33 balances with ψ33, the pressure diffusion
term. In the open-channel flow, P22 and P33 are identically zero, i.e. in the budgets for



246 R. Broglia, A. Pascarelli and U. Piomelli

〈v′′v′′〉 and 〈w′′w′′〉, no direct production term exists. Here, at the lower wall bisector,
P22 � −2〈v′′v′′〉∂〈v〉/∂y and P33 � −2〈w′′w′′〉∂〈w〉/∂z. While the latter goes to zero at
the interface, the former is a positive quantity. This difference balances with a negative
φ22 (see figure 18c). Since Πkk = 0 from continuity, an increase in φ22 can be expected
to result in a decrease in the magnitude of φ33. The budget for 〈w′′w′′〉 confirms this
line of reasoning. It should be noted here that, as is the case in solid–solid corners
(Huser et al. 1994), the turbulence dissipation-rate tensor contributes significantly to
the Reynolds stress balance, both near the walls and far from them. Figure 20 shows
high-dissipation events in the high-turbulence production area.

The cross-plane Reynolds stress, 〈v′′w′′〉 (which is identically zero in two-
dimensional turbulent shear flows) together with the anisotropy of the normal stresses
in the (y, z)-plane, controls the production of the mean streamwise vorticity, whose
complete balance is deferred to the next paragraph. In the present configuration, the
Reynolds stress production rates that contain the secondary shear stress, 〈v′′w′′〉, are
weak. Previous studies on three-dimensional duct flows have shown that generation of
〈v′′w′′〉 results from two mechanisms, one associated with the gradients of secondary
velocities, the other with the distortion of primary velocity gradients (Perkins 1970).
The former mechanism seems more effective that the latter (Demuren & Rodi 1984).
Along the sidewall there is a positive production of 〈v′′w′′〉 caused by the secondary
Reynolds stresses; this P23 balances the negative contribution from ε23. Along the
free surface, on the other hand, the magnitudes of all terms on the right-hand side of
the 〈v′′w′′〉 balance equation, although small, appear to be of equal magnitude.

3.4. Open duct: vorticity

As outlined above, in an open square duct, mean three-dimensionality results in non-
zero mean streamwise vorticity 〈ωx〉 = ∂〈w〉/∂y − ∂〈v〉/∂z. The origin of the mean
secondary flow can be linked to the same mechanisms as those in a closed square
duct, since in both cases the anisotropy of the turbulence stress is the driving force
that generates the secondary flows. The relationship between the Reynolds-stress
anisotropy and the secondary flow is illustrated by the transport equation for 〈ωx〉. In
a statistically steady fully developed turbulent flow, in which streamwise gradients are
identically zero, the quasi-inviscid stretching and deflection (skew-induced) generation
term cancels and this equation reads

〈v〉∂〈ωx〉
∂y

+ 〈w〉∂〈ωx〉
∂z︸ ︷︷ ︸

I

− 1

Reτ

(
∂2〈ωx〉
∂y2

+
∂2〈ωx〉

∂z2

)
︸ ︷︷ ︸

II

− ∂2

∂y∂z

(
〈v′′2 + τyy〉 − 〈w′′2 + τzz〉

)
︸ ︷︷ ︸

III

−
(

∂2

∂y2
− ∂2

∂z2

)
〈v′′w′′ + τyz〉︸ ︷︷ ︸

IV

= 0. (3.8)

Term I represents advection of the mean streamwise vorticity by mean secondary
velocities; term II is the diffusion of vorticity due to viscosity; III and IV are
production terms (resolved + SGS) due to the gradient of the difference in the
normal Reynolds stresses (〈v′′2 + τyy〉 − 〈w′′2 + τzz〉), and to the difference in the
gradient of the secondary shear Reynolds stress (〈v′′w′′ + τyz〉), respectively.

It has been argued by other investigators (see, for example, Perkins 1970) that, for
fully developed flows, the imbalance between gradients of normal stresses is primarily
responsible for the production of secondary flow vorticity, whereas the shear-stress
contribution, if not negligible, acts like a transport term in (3.8). For a more thorough
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Figure 22. Open duct flow, Reτ = 600: spatial distribution of the resolved anisotropy term
(〈v′′v′′〉 − 〈w′′w′′〉). Twenty-one equispaced contours between ±1.

discussion of the associated flow phenomena, see Bradshaw (1987). In the present
problem, the mean streamwise vorticity is directly tied to the secondary velocities
and the main mechanisms acting in (3.8) play a role in the origin of the secondary
flows. In the context of vorticity transport, the turbulent secondary-flow generation
in the mixed-corner flow presents a totally different spatial distribution from that in
the solid–solid corner, because of the significant differences in the distributions and
magnitudes of the turbulent stresses.

Figure 22 displays contours of the resolved anisotropy of the normal Reynolds
stresses, 〈v′′v′′〉 − 〈w′′w′′〉. Together with the cross-plane resolved Reynolds stress
〈v′′w′′〉 (shown in figure 8f ), this term contributes to the production and transport
of mean streamwise vorticity. The anisotropic term reaches a minimum along the
side wall, where the turbulent fluctuations in the direction normal to the sidewall
are suppressed by the boundary conditions. At both corners, the contours show two
regions of opposite sign, which are ultimately the cause of the generation of 〈ωx〉.
The gradient of the anisotropy term near the mixed corner, however, is higher than
that at the solid–solid corner.

Figure 23 shows the spatial distributions of the four terms of equation (3.8) for the
Reτ = 600 calculation. The two-dimensional fields of the different terms of (3.8) are
superimposed on filled contours of the mean streamwise vorticity. The contribution of
the SGS stresses was found to be negligible compared with the leading terms in (3.8).
As already pointed out, in the corner formed by the solid wall and the free surface,
〈ωx〉 has positive/negative extreme values in correspondence with the inner/outer
secondary flows. In general, advection represents the smallest contribution to the
budget (figure 23a), attaining both its extrema inside the inner secondary-flow cell.
Advection is negative at the juncture, and reaches a positive maximum on the free
surface, between the inner and outer secondary-flow cells, with a marginal impact
on the local 〈ωx〉 distribution. At the solid–solid corner (not shown), both Reynolds
normal and shear stress contributions are of the same order of magnitude, of opposite
sign and dominant with respect to advection. At the mixed corner, on the other hand,
the normal-stress contribution is dominant among the production terms, and positive
peak values of term III are always larger than negative values of term IV. Furthermore,



248 R. Broglia, A. Pascarelli and U. Piomelli

z

y

20

–20

0

1.0

0.8

0.7

0.9

(a)

0 0.1 0.2 0.3 0.4

z

1.0

0.8

0.7

0.9

(c)

0 0.1 0.2 0.3 0.4

y

1.0

0.8

0.7

0.9

(b)

0 0.1 0.2 0.3 0.4

1.0

0.8

0.7

0.9

(d )

0 0.1 0.2 0.3 0.4

–10

10
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denote negative contours. (a) Advection; (b) viscous diffusion; (c) production due to normal
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the net positive turbulence contribution overcomes the negative viscous diffusion in
the same region, giving rise to a positive streamwise vorticity at the inner secondary
flow. As expected, diffusion (figure 23b) is significant both close to the corners and
very close to the sidewall, but decreases rapidly away from the wall. At the free
surface, viscous diffusion acts as a source term in correspondence of the core of the
outer secondary flow. At the outer secondary flow, the balance is mainly between
terms II and III. The streamwise vorticity distribution along the sidewall, above the
viscous sublayer, in the region 0.6 < z/D < 0.9, is due to the sum of the resolved
parts of terms III and IV, which represent the main turbulent contributions to (3.8).

In LES, the vorticity fluctuations are less well-resolved than the velocity fluctuations,
since the unresolved scales contribute more to the former than to the latter. In the
present calculation, however, the grid resolution is fine enough that even the SGS
contribution to the vorticity is fairly small. An indication of this is the observation
that the SGS contribution to the total dissipation is between 18% and 21% for all the
cases examined. Thus, we believe that at least qualitative conclusions can be drawn by
examining the r.m.s. vorticity fluctuations obtained from the present simulation. The
surface-parallel components of the r.m.s. vorticity fluctuation, ωrms

x and ωrms
y , decrease

inside a very thin layer below the free surface and vanish at the free surface because
of the local shear-free condition. The anisotropic vorticity layer is much thinner than
the anisotropic velocity layer.

In figure 10, the vertical profiles of the fluctuating velocity components showed
the dependence on the Reynolds number of the thickness of the blockage layer. At
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Figure 24. Open duct flow: root-mean-square vorticity fluctuations normalized with u2
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is the distance from the free surface in wall units (the reference uτ is used in this normalization).
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x ; (a) Reτ = 360, (b) Reτ = 600, (c) Reτ = 1000. (d)–(f ) ωrms
y ; (d ) Reτ = 360,

(e) Reτ = 600, ( f ) Reτ = 1000. (g)–(i) ωrms
z ; (g) Reτ = 360, (h) Reτ = 600, (i ) Reτ = 1000.

——, y+ = 3; · · · · · ·, y+ = 15; – – – y+ = 30; —·— , y+ = Reτ /2.

the bottom-wall bisector, this layer has a thickness of about 40 wall units from the
free surface for Reτ = 360, 60 for Reτ = 600 and 100 for Reτ = 1000. In outer
coordinates, these vertical positions correspond to zFS � 0.1, approximately the same
vertical location where the pressure–strain tensor feels the blocking effect of the free
surface. Such Reynolds-number dependence is damped out as we move towards the
sidewall. On the other hand, the vertical variation of ωrms

x , ωrms
y and ωrms

z in wall
variables (figure 24) gives an indication of the thickness of the surface layer, whose



250 R. Broglia, A. Pascarelli and U. Piomelli

thickness is about 30 wall units and shows only a weak dependence from the sidewall
distance. While the streamwise vorticity fluctuations monotonically decrease inside
the surface layer to become negligible at the free surface, those normal to the sidewall
reach their maxima at z+

FS � 10 before dropping to zero.

4. Conclusions
Fully developed turbulent open-duct flows at three Reynolds numbers up to Reτ =

1000 (based on the friction velocity and duct width) was studied by large-eddy
simulations. The free surface was approximated by rigid shear-free conditions valid
in the zero-limit of Froude and Weber numbers. The mean flow field and a variety of
turbulence statistics were studied, to highlight the complex structure of the flow near
the mixed corner between the solid wall and the free surface, where the interaction of
the wall-bounded turbulence with the free-surface eddies generates complex physical
phenomena. In spite of a number of experimental and computational studies of the
‘mixed-boundary corner’ reported over the past decade, significant differences between
investigations result in disagreement on several issues. The present LES contributes
to clarify some of these discrepancies.

We find that the effects of the free surface in the square-duct flow produce several
substantial changes in the turbulence-driven secondary flows developed near the
corners. Here, the maximum value of the cross-stream velocity associated with these
secondary flows was found to be about 3% of the bulk velocity, slightly greater than
that observed in the companion calculations for closed-duct flows. The main feature of
the flow field near to the mixed corner is the existence of an ‘inner’ counterclockwise
and an ‘outer’ clockwise mean secondary flow. For the three Reynolds numbers
considered, the demarcation between inner and outer secondary flows occurs at ∼40
viscous lengths from the sidewall while the vertical size of the inner secondary region
was found to be ∼100 viscous lengths along the sidewall. The scale and the strength of
the outer secondary vortex are larger. Furthermore, in contrast to experimental studies,
our simulations clearly indicate the formation of a second ‘outer’ counterclockwise
vortical region near the sidewall, directly below the ‘inner’ one. The effect of the
inner secondary motion, which has a parallel in the wall-bounded corner flow, is
crucial.

The use of the ‘Clauser plot’ method to measure the wall stress was found to
result in inaccuracies, since the velocity profile near the sidewall deviates significantly
from the logarithmic law. Our calculations show that the friction velocity decreases
as the free surface is approached, as a result of the outflow region of the inner
secondary-flow cell, which thickens the boundary layer and reduces the wall shear
stress. Such a behaviour was also documented in previous experimental studies; the
present computations, however, also show an increase of uτ very near the surface, this
time owing to the inflow from the inner secondary cell, which convects high-speed
momentum toward the sidewall at the free surface. Near the corner, the advection
of streamwise momentum due to the secondary motions becomes significant. The
present results shed some light on the transverse spreading mechanism of turbulence
at the free surface. The two opposite diverging currents generated at the sidewalls and
merging at the duct’s center have a significant effect on the behaviour of the shear
components near the free surface. The multi-layer structure of the boundary-layer
near the interface, altered by the secondary motions, shows little dependence on the
Reynolds number.
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This was the first investigation of ‘mixed-boundary corner’ flows in which an
explanation of the existence and origin of secondary motions could be offered in the
context of several balance equations. All of the terms in the streamwise momentum
equation, vorticity transport, Reynolds stress budgets and turbulent energy transport
were computed from the present LES. Two regions can be distinguished, one in which
the advection increases the x-momentum, immediately below the surface, and one
further away from the corner, in which the momentum is decreased. The Reynolds-
stress gradient adjusts to maintain the balance. The turbulent kinetic energy and
Reynolds stress distributions are also significantly affected by the secondary motions
in the corner.

Of particular interest are the Reynolds-stress budgets. Two factors play important
roles in the Reynolds stress distributions: the pressure–strain redistribution term
and the production. Production dominates the budgets whenever the mean shear
enters the production term (i.e. for the 〈u′′u′′〉, 〈u′′v′′〉 and 〈u′′w′′〉 components of
the Reynolds-stress tensor). The budgets of the other terms are dominated by the
pressure–strain term. Outside the inner secondary region, the stress normal to the
free surface, 〈w′′w′′〉, is transferred mainly to the streamwise one 〈u′′u′′〉, in agreement
with previous studies of boundary layers adjacent to the free surface. In the inner
secondary region, 〈w′′w′′〉 is distributed both to 〈u′′u′′〉 and 〈v′′v′′〉 through the free-
surface normal distribution of the pressure–strain term φ33. The physical reasons for
the TKE increase in the inner region can be summarized as follows: the primary
off-diagonal Reynolds stresses, 〈u′′v′′〉 and 〈u′′w′′〉, fed by 〈u′′u′′〉 and 〈v′′v′′〉 through
the production terms, affect directly the production of 〈u′′u′′〉, which increases at
the inner secondary flow cell, and remains positive across the surface. At the free
surface, as the distance from the sidewall increases, the pressure–strain term φ33

changes from a destruction to a production term at the demarcation between inner
and outer flow regions. The mean secondary motion is driven by the anisotropy
of Reynolds stresses; in the mean streamwise vorticity equation, at the mixed
corner, the normal-stress contribution is dominant among the production terms.
The positive contribution of the turbulence overcomes the negative viscous diffusion
in this region, giving rise to positive streamwise vorticity at the inner secondary
flow.

The Reynolds-number dependence of the terms in the TKE budget was investigated,
and it was found that (within the range of Reynolds numbers examined in this work)
the corner does not affect the wall scaling expected near a solid boundary for most of
the terms. Only advection deviates significantly from this scaling. While the source-
layer thickness is sensitive to the distance from the sidewall, the surface-layer thickness,
approximately 30 viscous lengths, is only weakly affected by the wall distance.

Taken together, the results presented in the present paper can contribute to the
development of turbulence models for RANS equations, as well as elucidate some
important physical mechanisms in this very important configuration. In this regard,
this investigation is the precursor of a follow-up flow study in which wave-induced
effects are not negligible.
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